Hydrogen bonds and salt bridges across protein-protein interfaces.
نویسندگان
چکیده
To understand further, and to utilize, the interactions across protein-protein interfaces, we carried out an analysis of the hydrogen bonds and of the salt bridges in a collection of 319 non-redundant protein-protein interfaces derived from high-quality X-ray structures. We found that the geometry of the hydrogen bonds across protein interfaces is generally less optimal and has a wider distribution than typically observed within the chains. This difference originates from the more hydrophilic side chains buried in the binding interface than in the folded monomer interior. Protein folding differs from protein binding. Whereas in folding practically all degrees of freedom are available to the chain to attain its optimal configuration, this is not the case for rigid binding, where the protein molecules are already folded, with only six degrees of translational and rotational freedom available to the chains to achieve their most favorable bound configuration. These constraints enforce many polar/charged residues buried in the interface to form weak hydrogen bonds with protein atoms, rather than strongly hydrogen bonding to the solvent. Since interfacial hydrogen bonds are weaker than the intra-chain ones to compete with the binding of water, more water molecules are involved in bridging hydrogen bond networks across the protein interface than in the protein interior. Interfacial water molecules both mediate non-complementary donor-donor or acceptor-acceptor pairs, and connect non-optimally oriented donor-acceptor pairs. These differences between the interfacial hydrogen bonding patterns and the intra-chain ones further substantiate the notion that protein complexes formed by rigid binding may be far away from the global minimum conformations. Moreover, we summarize the pattern of charge complementarity and of the conservation of hydrogen bond network across binding interfaces. We further illustrate the utility of this study in understanding the specificity of protein-protein associations, and hence in docking prediction and molecular (inhibitor) design.
منابع مشابه
Desolvation Costs of Salt Bridges across Protein Binding Interfaces: Similarities and Differences between Implicit and Explicit Solvent Models
The prevalence of salt bridges across protein binding interfaces is surprising given the significant costs of desolvating the two charged groups upon binding. These desolvation costs, which are difficult to examine using laboratory experiments, have been computed in previous studies using the Poisson-Boltzmann (PB) implicit solvent model. Here, for the first time, we directly compare the PB imp...
متن کاملEvaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
An experimental approach to evaluate the net binding free energy of buried hydrogen bonds and salt bridges is presented. The approach, which involves a modified multiple-mutant cycle protocol, was applied to selected interactions between TEM-1-beta-lactamase and its protein inhibitor, BLIP. The selected interactions (two salt bridges and two hydrogen bonds) all involving BLIP-D49, define a dist...
متن کاملIdentifying protein folding cores from the evolution of flexible regions during unfolding.
The unfolding of a protein can be described as a transition from a predominantly rigid, folded structure to an ensemble of denatured states. During unfolding, the hydrogen bonds and salt bridges break, destabilizing the secondary and tertiary structure. Our previous work shows that the network of covalent bonds, salt bridges, hydrogen bonds, and hydrophobic interactions forms constraints that d...
متن کاملEvidence of turn and salt bridge contributions to beta-hairpin stability: MD simulations of C-terminal fragment from the B1 domain of protein G.
We ran and analyzed a total of eighteen, 10 ns molecular dynamics simulations of two C-terminal beta-hairpins from the B1 domain of Protein G: twelve runs for the last 16 residues and six runs for the last 15 residues, G41-E56 and E42-E56, respectively. Based on their CalphaRMS deviation from the starting structure and the pattern of stabilizing interactions (hydrogen bonds, hydrophobic contact...
متن کاملAcetylation of Surface Lysine Groups of a Protein Alters the Organization and Composition of Its Crystal Contacts.
This paper uses crystals of bovine carbonic anhydrase (CA) and its acetylated variant to examine (i) how a large negative formal charge can be accommodated in protein-protein interfaces, (ii) why lysine residues are often excluded from them, and (iii) how changes in the surface charge of a protein can alter the structure and organization of protein-protein interfaces. It demonstrates that acety...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering
دوره 10 9 شماره
صفحات -
تاریخ انتشار 1997